首页> 外文OA文献 >Matrix Representation of Iterative Approximate Byzantine Consensus in Directed Graphs
【2h】

Matrix Representation of Iterative Approximate Byzantine Consensus in Directed Graphs

机译:迭代近似拜占庭共识的矩阵表示   有向图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a proof of correctness of an iterative approximateByzantine consensus (IABC) algorithm for directed graphs. The iterativealgorithm allows fault- free nodes to reach approximate conensus despite thepresence of up to f Byzantine faults. Necessary conditions on the underlyingnetwork graph for the existence of a correct IABC algorithm were shown in ourrecent work [15, 16]. [15] also analyzed a specific IABC algorithm and showedthat it performs correctly in any network graph that satisfies the necessarycondition, proving that the necessary condition is also sufficient. In thispaper, we present an alternate proof of correctness of the IABC algorithm,using a familiar technique based on transition matrices [9, 3, 17, 19]. The key contribution of this paper is to exploit the following observation:for a given evolution of the state vector corresponding to the state of thefault-free nodes, many alternate state transition matrices may be chosen tomodel that evolution cor- rectly. For a given state evolution, we identify oneapproach to suitably "design" the transition matrices so that the standardtools for proving convergence can be applied to the Byzantine fault-tolerantalgorithm as well. In particular, the transition matrix for each iteration isdesigned such that each row of the matrix contains a large enough number ofelements that are bounded away from 0.
机译:本文提出了有向图的迭代近似拜占庭共识(IABC)算法正确性的证明。迭代算法允许无故障节点达到大约共识,尽管存在多达f个拜占庭式故障。我们最近的工作[15,16]显示了底层网络图上存在正确的IABC算法的必要条件。文献[15]还分析了一种特定的IABC算法,并证明该算法在满足必要条件的任何网络图中均能正确执行,证明该必要条件也已足够。在本文中,我们使用基于过渡矩阵的熟悉技术[9,3,17,19],提出了IABC算法正确性的另一种证明。本文的主要贡献是利用以下观察结果:对于与无故障节点状态相对应的状态向量的给定演化,可以选择许多替代状态转移矩阵来正确建模该演化。对于给定的状态演化,我们确定一种适当地“设计”过渡矩阵的方法,以便证明收敛的标准工具也可以应用于拜占庭容错算法。特别是,设计每次迭代的过渡矩阵,以使矩阵的每一行都包含足够大数量的元素(以0为界)。

著录项

  • 作者

    Vaidya, Nitin;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号